用户工具

站点工具


start

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
start [2019/12/29 14:15]
jinlong [平台概述]
start [2020/07/12 12:07] (当前版本)
行 3: 行 3:
 ===== 平台概述 ===== ===== 平台概述 =====
  
-EPPDEV-MLIB分布式模型部署平台,主要实现了常用机器学习模型的固化、加载和实时运算。+当前机器学习的应用已经日益广泛,​但是在机器学习模型的应用过程中,​也逐步暴露了一 
 +些人员技能和衔接上的问题,为了更好的解决这些问题,特开发了本 ​EPPDEV-MLIB 分布式模 
 +型部署平台,实现了常用机器学习模型的固化、加载和实时运算,以便于后续模型的落地
  
 +  * 平台建设的详细背景及优劣时说明参见:[[background|背景说明]]
  
  
 +===== 平台部署 =====
  
 +平台及与JavaEE/​MySQL数据库开发,一般建议安装在64位企业级Linux操作系统上(如CentOS7+,​ Ubuntu Server LTS等),
 +系统提供全自动的安装脚本,通过简单的命令即可完成平台的安装。
  
-===== 背景说明 ===== 
  
-当前机器学习应用已经日益广泛,​但是在机器学习模型的应用过程中,​也逐步暴露了一 +  * 详细环境需求安装部署环境详见:[[install:​environment|EPPDEV-MLIB平台部署环境需求]] 
-些人员技能衔接上的问题,​为了更好的解决这些问题,​特开发了本 EPPDEV-MLIB 分布式模 +  * 详细安装流程请参见:[[install:​install|EPPDEV-MLIB系统安装说明]] 
-型部署平台,​以便于后续模型落地。+===== 系统管理 =====
  
-详细背景说明参见[[background|背景说明]]+EPPDEV-MLIB平台的注册中心提供WEB前端界面,实现基础的用户管理、模型发布和各个组件的调用量展示功能
  
 +  * 用户管理,主要实现访问注册中心进行模型发布的用户的管理,详见:[[manage:​user|用户管理功能使用说明]]
 +  * 模型发布,主要实现模型的创建及其在执行引擎中的发布功能,详见:[[manage:​model|模型部署与更新]]
 +  * 状态监控:主要实现各个组件运行状态和分模型、执行引擎的调用量的展示功能,详见:[[manage:​monitor|运行状态监控]]
 +===== 接口调用 =====
  
-===== 平台部署 =====+模型计算支持以下三种方式进行调用:
  
-平台部署所需安装组件包括+  * 实时接口方式,通过Rest API进行模型调用,详见:[[call:​api|实时接口调用]] 
 +  * 批量计算方式,通过批处理任务进行模型调用,详见:[[call:​batch|批量数据接口调用]] 
 +  * udf方式,通过hiveudf进行模型计算调用,详见[[call:​udf|HIVE UDF方式进行调用]]
  
-  * main-register:​ 主用注册中心1个 
-  * backup-register:备用注册中心1个 
-  * provider:执行引擎(多个) 
-  * consumer:服务网关(多个) 
-  * monitor:监控中心(1-2个) 
  
-平台及与JavaEE/​MySQL数据库开发,一般议安装在64位企业级Linux操作系统上(如CentOS7+,​ Ubuntu Server LTS等), +===== 模说明 =====
-系统提供全自动的安装脚本,通过简单的命令即可完成平台的安装。+
  
 +为支持基于EPPDEV-MLIB的模型部署,整个数据预处理、特征选择、模型训练,​建议全部封装到 PMMLPipeline 中,
 +从而实现所有处理过程均可保存到pmml文件中。
  
-详细环境需求典型安装部署环境详见:[[install:​environment|EPPDEV-MLIB平台部署环境需求]]+数据预处理一般全部通过 DataFrameMapper完成封装,以支持处理过程保存,程序代码 
 +的可读性
  
-详细安装流程请参见:[[install:install|EPPDEV-MLIB系统安装说明]] +  * 基础代码参见: [[model:​basic|建模基础示例代码]] 
-===== 系统管理 =====+  * 常用数据预处理代码示例: 
 +    * 空值填充参见:[[model:preprocess:​impute|使用SimleImputer进行空值填充]] 
 +    * 连续数据分段方式参见:[[model:​preprocess:​cut|使用CutTransformer进行分段]] 
 +    * 离散数据分组参见:[[model:​preprocess:​group|使用ReplaceTransformer进行连续数据分段]] 
 +    * 多值变量处参见:[[model:​preprocess:​multivalue|多值变量数据的处理]] 
 +  * 常见问题解决参见:[[model:​errors|常见问题处理]]
  
-===== 接口调用 ===== +===== TODOLIST ​=====
- +
-EPPDEV-MLIB平台对外提供实时接口、批量数据调用、HIVE UDF三种方式来进行模型计算的调用。 +
- +
-详细的调用方式参见: [[call|模型计算接口调用说明]] +
-===== 建模说明 ===== +
-===== TODO-LIST ​=====+
  
   * Python模型发布SDK示例   * Python模型发布SDK示例
-  * 定期清理缓存数据,避免内存持续增长 
  
  
start.1577600111.txt.gz · 最后更改: 2020/07/12 12:07 (外部编辑)